skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sterrett, John D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Stress-protective effects have been reported forM. vaccaeNCTC 11659 andM. vaccaeATCC 15483T. However, it remains to be investigated whether also closely related rapidly growing environmental saprophytic non-tuberculous mycobacteria (NTM) species have protective effects against the negative consequences of chronic psychosocial stress. Therefore, the aim of the current study was to assess whether repeated i.g. administrations of a heat-inactivated preparation ofMycobacterium aurumDSM 33539 prior to 19 days of chronic subordinate colony housing (CSC) are able to ameliorate the negative effects of this preclinically validated mouse model for chronic psychosocial stress on subsequent dextran sulfate sodium (DSS) colitis in male C57BL/6N mice. The results of the present study show that repeated i.g. administrations ofM. aurumDSM 33539 have stabilizing effects on the composition of the gut microbiome, indicated by the findings thatM. aurumDSM 33539 prevented CSC-induced increases in the relative abundances of the colitogenic phyla Desulfobacterota and Deferribacterota. Indeed, the relative abundance of Deferribacterota on day 19 was strongly correlated with histological damage to the colon. In line with the latter,M. aurumDSM 33539 was further protective against the aggravating effects of stress on subsequent DSS colitis. Collectively, our findings confirm and extend previous findings from our group and suggest that the stress-protective effects reported forM. vaccaeNCTC 11659 andM. vaccaeATCC 15483Tare generalizable also to other NTM species. 
    more » « less
    Free, publicly-accessible full text available January 29, 2026
  2. Free, publicly-accessible full text available July 1, 2026
  3. Auchtung, Jennifer M (Ed.)
    ABSTRACT Studies have suggested that phytochemicals in green tea have systemic anti-inflammatory and neuroprotective effects. However, the mechanisms behind these effects are poorly understood, possibly due to the differential metabolism of phytochemicals resulting from variations in gut microbiome composition. To unravel this complex relationship, our team utilized a novel combined microbiome analysis and metabolomics approach applied to low complexity microbiome (LCM) and human colonized (HU) gnotobiotic mice treated with an acute dose of powdered matcha green tea. A total of 20 LCM mice received 10 distinct human fecal slurries for ann= 2 mice per human gut microbiome; 9 LCM mice remained un-colonized with human slurries throughout the experiment. We performed untargeted metabolomics on green tea and plasma to identify green tea compounds that were found in the plasma of LCM and HU mice that had consumed green tea. 16S ribosomal RNA gene sequencing was performed on feces of all mice at study end to assess microbiome composition. We found multiple green tea compounds in plasma associated with microbiome presence and diversity (including acetylagmatine, lactiflorin, and aspartic acid negatively associated with diversity). Additionally, we detected strong associations between bioactive green tea compounds in plasma and specific gut bacteria, including associations between spiramycin andGemmigerand between wildforlide andAnaerorhabdus. Notably, some of the physiologically relevant green tea compounds are likely derived from plant-associated microbes, highlighting the importance of considering foods and food products as meta-organisms. Overall, we describe a novel workflow for discovering relationships between individual food compounds and the composition of the gut microbiome. IMPORTANCEFoods contain thousands of unique and biologically important compounds beyond the macro- and micro-nutrients listed on nutrition facts labels. In mammals, many of these compounds are metabolized or co-metabolized by the community of microbes in the colon. These microbes may impact the thousands of biologically important compounds we consume; therefore, understanding microbial metabolism of food compounds will be important for understanding how foods impact health. We used metabolomics to track green tea compounds in plasma of mice with and without complex microbiomes. From this, we can start to recognize certain groups of green tea-derived compounds that are impacted by mammalian microbiomes. This research presents a novel technique for understanding microbial metabolism of food-derived compounds in the gut, which can be applied to other foods. 
    more » « less
    Free, publicly-accessible full text available February 4, 2026
  4. Free, publicly-accessible full text available March 1, 2026
  5. Beiko, Robert G (Ed.)
    ABSTRACT Inflammatory bowel disease (IBD) is characterized by complex etiology and a disrupted colonic ecosystem. We provide a framework for the analysis of multi-omic data, which we apply to study the gut ecosystem in IBD. Specifically, we train and validate models using data on the metagenome, metatranscriptome, virome, and metabolome from the Human Microbiome Project 2 IBD multi-omic database, with 1,785 repeated samples from 130 individuals (103 cases and 27 controls). After splitting the participants into training and testing groups, we used mixed-effects least absolute shrinkage and selection operator regression to select features for each omic. These features, with demographic covariates, were used to generate separate single-omic prediction scores. All four single-omic scores were then combined into a final regression to assess the relative importance of the individual omics and the predictive benefits when considered together. We identified several species, pathways, and metabolites known to be associated with IBD risk, and we explored the connections between data sets. Individually, metabolomic and viromic scores were more predictive than metagenomics or metatranscriptomics, and when all four scores were combined, we predicted disease diagnosis with a Nagelkerke’sR2of 0.46 and an area under the curve of 0.80 (95% confidence interval: 0.63, 0.98). Our work supports that some single-omic models for complex traits are more predictive than others, that incorporating multiple omic data sets may improve prediction, and that each omic data type provides a combination of unique and redundant information. This modeling framework can be extended to other complex traits and multi-omic data sets. IMPORTANCEComplex traits are characterized by many biological and environmental factors, such that multi-omic data sets are well-positioned to help us understand their underlying etiologies. We applied a prediction framework across multiple omics (metagenomics, metatranscriptomics, metabolomics, and viromics) from the gut ecosystem to predict inflammatory bowel disease (IBD) diagnosis. The predicted scores from our models highlighted key features and allowed us to compare the relative utility of each omic data set in single-omic versus multi-omic models. Our results emphasized the importance of metabolomics and viromics over metagenomics and metatranscriptomics for predicting IBD status. The greater predictive capability of metabolomics and viromics is likely because these omics serve as markers of lifestyle factors such as diet. This study provides a modeling framework for multi-omic data, and our results show the utility of combining multiple omic data types to disentangle complex disease etiologies and biological signatures. 
    more » « less
  6. Irritable bowel syndrome (IBS) is a common gastroenterological disorder with triggers such as fructose. We showed that our IBS patients suffering from socioeconomic challenges have a significantly high consumption of high-fructose corn syrup (HFCS). Here, we characterize gut microbial dysbiosis and fatty acid changes, with respect to IBS, HFCS consumption, and socioeconomic factors. Fecal samples from IBS patients and healthy controls were subjected to microbiome and lipidome analyses. We assessed phylogenetic diversity and community composition of the microbiomes, and used linear discriminant analysis effect size (LEfSe), analysis of compositions of microbiomes (ANCOM) on highly co-occurring subcommunities (modules), least absolute shrinkage and selection operator (LASSO) on phylogenetic isometric log-ratio transformed (PhILR) taxon abundances to identify differentially abundant taxa. Based on a Procrustes randomization test, the microbiome and lipidome datasets correlated significantly (p = 0.002). Alpha diversity correlated with economic factors (p < 0.001). Multiple subsets of the phylogenetic tree were associated with HFCS consumption (p < 0.001). In IBS patients, relative abundances of potentially beneficial bacteria such as Monoglobaceae, Lachnospiraceae, and Ruminococcaceae were lower (p = 0.007), and Eisenbergiella, associated with inflammatory disorders, was higher. In IBS patients, certain saturated fatty acids were higher and unsaturated fatty acids were lower (p < 0.05). Our study aims first to underscore the influence of HFCS consumption and socioeconomic factors on IBS pathophysiology, and provides new insights that inform patient care. 
    more » « less